

Prime Consulting Engineers Pty. Ltd.

Design Report:

2m x 2m, 2.5m x 2.5m and 3m x 3m

Premium Café SAVILLE Umbrella Structures

For

60km/hr Wind speed (Open Condition)

For

EXTREME MARQUEES

Ref: R-24-954-3

Date: 31/07/2024

Amendment: -

Email: info@primeengineers.com.au Web: www.primeengineers.com.au Address: Level M/394 Lane Cove Rd, Macquarie Park Phone: (02) 8964 1818

Document Control

Should you have any queries relating to any technical aspects of this report please contact our office on (02) 8964 1818.

Document Authorization

RECIPIENT(S):	Mitchell Taverner
Document Issued Date:	31/07/2024

Rev.	Date	Issue for	Prepared by	Checked by
0	31/07/2024	Client's Review	AK	BG

Summary of Amendments

Rev.	Section(s)	Description
0	-	-

CONTENTS

1	Intro	oduct	tion and Scope:	4
	1.1	Proj	ect Description	4
	1.2	Refe	erences	4
	1.3	Nota	ation	5
2	Desi	5		
	2.1	Geo	metry Data	5
	2.2	Assu	umptions & Limitations	7
	2.3	Excl	usions	7
	2.4	Desi	ign Parameters and Inputs	7
	2.4.	1	Load Cases	7
	2.4.2	2	Load Combinations	8
3	Speo	cifica	tions	8
	3.1	Mat	erial Properties	8
	3.2	Buc	kling Constants	8
	3.3	Mer	nber Sizes & Section Properties	9
4	Win	d Ana	alysis	10
	4.1	Win	d calculations	10
	4.1.1	Si	ummary	12
	4.2	Win	d Load Diagrams	13
	4.2.	1	Wind Load Ultimate (W _{min}) _ Opened Condition	13
	4.2.2	2	Wind Load Ultimate (W _{max}) _Opened Condition	14
5	Ana	lysis		15
	5.1	Resu	ults	15
	5.1.	1	Maximum Bending Moment in Major Axis	15
	5.1.2	2	Maximum Bending Moment in Minor Axis	16
	5.1.3	3	Maximum Shear	17
	5.1.4	4	Maximum Axial Force	18
	5.1.	5	Maximum Reactions – Opened	19
6	Alur	niniu	m Member Design	20
	6.1	Tem	porary Installation with 500 x 500x15 Base Plate	20
7	Sum	mary	and Recommendations	21
8	Арр	endix	A – Aluminium Design Based on AS1664.1	22
	8.1	Mai	n Pole	23
	8.2	Lon	g Rib 1	27
	8.3	Lon	g Rib 2	32
	8.4	Sho	rt Rib 1	36
	8.5	Sho	rt Rib 2	41
9	Арр	endix	KB – Technical Data Sheet	46

1 Introduction and Scope:

The report and certification are the sole property of Prime Consulting Engineers Pty. Ltd.

Prime Consulting Engineers have been engaged by Extreme Marquees Pty. Ltd. to carry out a structural analysis of 2m x 2m, 2.5m x 2.5m and 3m x 3m Premium Café SAVILLE Umbrella Structures for **60km/hr** wind speed in open condition. It should be noted that the outcome of our analysis is limited to the selected items as outlined in this report.

This report shall be read in conjunction with the documents listed in the references (Cl. 1.2)

1.1 Project Description

The report examines the effect of the peak gust wind that an equivalent moving average time of approximately 0.2S **16.67m/s (60 km/hr)** positioned for the worst effect, in open condition respectively, on 2m x 2m, 2.5m x 2.5m and 3m x 3m Premium Café SAVILLE Umbrella Structures as the worst-case scenario. The relevant Australian Standards AS1170.0:2002 General principles, AS1170.1:2002 Permanent, imposed, and other actions and AS1170.2:2021 Wind actions are used. The design check is in accordance with AS1664.1 Aluminium Structures.

1.2 References

- The documents referred to in this report are as follows:
 - Report on results produced through SAP2000 V24 software & excel spreadsheets.
- The basic standards used in this report are as follows:
 - AS 1170.0:2002 Structural Design Actions (Part 0: General principles)
 - AS 1170.1:2002 Structural Design Actions (Part 1: Permanent, imposed, and other actions)
 - AS 1170.2:2021 Structural Design Actions (Part 2: Wind Actions)
 - AS1664.1:1997 Aluminium Structures.
- Section Properties of Aluminium Section provided by the client.
- The program(s) used for this analysis are as follows:
 - o SAP2000 V24
 - o Microsoft Excel

1.3 Notation

AS/NZS	Australian Standard/New Zealand Standard
FEM/FEA	Finite Element Method/Finite Element Analysis
SLS	Serviceability Limit State
ULS	Ultimate Limit State

2 Design Overview

2.1 Geometry Data

Address: Level M 394 Lane Cove Rd Macquarie Park NSW 2113 Phone: (02) 8964 1818

Figure 1: 2m x 2m, 2.5m x 2.5m and 3m x 3m Premium Café SAVILLE Umbrella Structures

Size	2m x 2m	2.5m x 2.5m	3m x 3m						
Canopy Span	2m x 2m	2.5m x 2.5m	3m x 3m						
Height	2.7m								
Clearance	2.1m								
Fabric Weight	2.5kg	2.5kg 2.8kg 3.2kg							
Frame Weight	10kg	11kg	12kg						
Frame Box Dimensions	30 x 30 x 262cm								
Main Profile Dia.	50mm diameter x 2.8mm thick								
Framework	Aluminium (Black or Silver)								
Pole Connectors	Extruded Aluminium								
Lifting	4x Pulley System								
Fabric	Spanish Recasens								
Printing	UV Digital Print Screen Printing (4 colou	rs)							
Manufacturer's Warranty	Frame 3 Years Recasens Fabric: 5 Years Printed Fabric: 2 Years	S							
Weight Plates	Optional accessory								

2.2 Assumptions & Limitations

- For forecast winds in excess of **60km/hr**, the umbrella structure should be closed.
- The umbrella with temporary anchorage system must be stored in an enclosed building when forecast wind exceeds **60km/hr**.
- The structure is design for wind parameters as below:
 - Wind Region A
 - o TC2
 - M_s, M_t & M_d = 1
- Shall the site conditions/wind parameters exceed prescribed design wind actions (refer to <u>Cl.4</u>), Prime Consulting Engineers Pty. Ltd. should be informed to determine appropriate wind classifications and amend computations accordingly.
- It is assumed that the fabric weighs 500gr/m².
- Aluminium alloy is to be 6061-T6.
- It is assumed that the umbrella is "empty under" for calculating wind loads. As per AS1170.2:2021, empty under is defined "Any goods or materials stored under the roof block less than 50% of the cross-section exposed to the wind".

2.3 Exclusions

- Design of fabric.
- Wind actions due to tropical or severe tropical cyclonic areas.
- Snow and ice loads.

2.4 Design Parameters and Inputs

2.4.1 Load Cases

- 1. G Permanent actions (Dead load)
- 2. Wu Ultimate wind action (ULS)
- 3. Ws Serviceability wind action (SLS)

2.4.2 Load Combinations

Strength (ULS):

1.	1.35G	Permanent action only
2.	0.9G+Wu	Permanent and wind actions
3.	1.2G+W _u	Permanent and wind actions
Service	ability (SLS):	

1. $G+W_s$ Wind service actions

3 Specifications

3.1 Material Properties

Material Properties											
6061-T6	Ftu	Fty	F _{cy}	F_{su}	F _{sy}	F_{bu}	F_{by}	E	k t	kc	
	262	241	241	165	138	551	386	70000	1	1.12	

3.2 Buckling Constants

TABLE 3.3(D) BUCKLING CONSTANTS FOR ALLOY 6061-T6												
Type of member and stress	Interce	ept, MPa	Slop	oe, MPa	Intersection							
Compression in columns and beam flanges	Bc	271.04	Dc	1.69	Cc	65.89						
Compression in flat plates	Bp	310.11	Dp	2.06	Cp	61.60						
Compression in round tubes under axial end load	Bt	297.39	Dt	10.70	Ct	*						
Compressive bending stress in rectangular bars	B _{br}	459.89	D _{br}	4.57	Cbr	67.16						

Т

Prime Consulting Engineers Pty. Ltd. Email: <u>info@primeengineers.com.au</u>

Compressive bending stress in round tubes	B _{tb}	653.34	Dtb	50.95	Ctb	78.23
Shear stress in flat plates	Bs	178.29	Ds	0.90	Cs	81.24
Ultimate strength of flat plates in compression	K 1	0.35	k 2	2.27		
Ultimate strength of flat plates in bending	K 1	0.5	k2	2.04		

* Ct shall be determined using a plot of curves of limit state stress based on elastic and inelastic buckling or by trial-and-error solution.

3.3 Member Sizes & Section Properties

MEMBER(S)	Section	d	t	Ус	Ag	Z _x	Zy	Sx	Sy	l _x	ly	J	r _x	ry
		mm	mm	mm	mm²	mm ³	mm ³	mm ³	mm ³	mm⁴	mm⁴	mm⁴	mm	mm
Main pole	D50x2.8	50	2.8	25.0	415.2	4641.2	4641.2	6245.3	6245.3	116029.8	116030	232059.6	16.7	16.7

MEMBER(S)	Section	b	d	t	Уc	Ag	Zx	Zy	Sx	Sy	lx	ly	J	rx	ry
		mm	mm	mm	mm	mm²	mm³	mm ³	mm ³	mm ³	mm⁴	mm⁴	mm ⁴	mm	mm
Long Rib 1	17x32x1.8	17	32	1.8	16.0	163.4	1302.7	871.4	1650.0	1037.1	20842.6	7406.9	16708.9	11.3	6.7
Long Rib 2	17x32x1.8	17	32	1.8	16.0	163.4	1302.7	871.4	1650.0	1037.1	20842.6	7406.9	16708.9	11.3	6.7
Short Rib 1	17x32x1.8	17	32	1.8	16.0	163.4	1302.7	871.4	1650.0	1037.1	20842.6	7406.9	16708.9	11.3	6.7
Short Rib 2	17x32x1.8	17	32	1.8	16.0	163.4	1302.7	871.4	1650.0	1037.1	20842.6	7406.9	16708.9	11.3	6.7

4 Wind Analysis

4.1 Wind calculations

Project: EXTREME MARUQEES

Job no. 24-954-3

Designer: AK

Date: 31/07/2024

Amendment:

Name	Symbol	Value	Unit	Notes	Ref.
		In	put		
Importance level		2			Table 3.1 - Table 3.2 (AS1170.0)
Annual probability of exceedance		1/500			Table 3.3
Regional gust wind speed		60	Km/hr		
Regional gust wind speed	VR	16.67	m/s		
Wind Direction Multipliers	Md	1			Table 3.2 (AS1170.2)
Terrain Category	тс	2			
Terrain Category Multiplier	M _{Z,Cat}	0.91			
Shield Multiplier	Ms	1			4.3 (AS1170.2)
Topographic Multiplier	Mt	1			4.4 (AS1170.2)
Site Wind Speed	V _{Site,β}	15.17	m/s	V _{Site,β} =V _R *M _d *M _{z,cat} *M _S ,M _t	
Pitch	α	22.5	Deg		
Pitch	α	-	rad		
Width	В	3	m		
Length	D	3	m		
Height	Z	2.4	m		
Porosity Ratio	б	1		ratio of solid area to total area	
		Wind F	Pressure		
ρ air	ρ	1.2	Kg/m ³		

dynamic response factor	C_{dyn}	1			
Wind Pressure	ho*Cfig	0.138	Kg/m ²	$\rho=0.5\rho_{air}^{*}(V_{des,\beta})^{2}C_{fig}C_{dyn}$	2.4 (AS1170.2)
		WIND DIREC	CTION 1	(0 =0)	
		External	Pressur	e	
1. Free Roof				α =0°	
Area Reduction Factor	Ka	1			D7
local pressure factor	Kı	1			
factor	Kp	1.00			
External Pressure Coefficient MIN	$C_{P,w}$	-0.3			
External Pressure Coefficient MAX	C _{P,w}	0.6			
External Pressure Coefficient MIN	CP,I	-0.6			
External Pressure Coefficient MAX	C _{P,I}	0			
aerodynamic shape factor MIN	$C_{\text{fig},w}$	-0.30			
aerodynamic shape factor MAX	$C_{\text{fig},w}$	0.60			
aerodynamic shape factor MIN	$C_{\text{fig,I}}$	-0.60			
aerodynamic shape factor MAX	Cfig,I	0.00			
Pressure Windward MIN	Р	-0.04	kPa		
Pressure Windward MAX	Р	0.08	kPa		
Pressure Leeward MIN	Р	-0.08	kPa		
Pressure Leeward MAX	Р	0.00	kPa		
				(<u> </u>	
		External	Pressur	re	
4. Free Roof				α =180°	D7
Area Reduction Factor	Ka	1			
local pressure factor	Kı	1			
porous cladding reduction factor	Kp	1.00			
External Pressure Coefficient MIN	CP,w	-0.3			
External Pressure Coefficient MAX	CP,w	0.4			
External Pressure Coefficient MIN	C _{P,I}	-0.4			

External Pressure Coefficient MAX	C _{P,I}	0	
aerodynamic shape factor MIN	C _{fig,w}	-0.30	
aerodynamic shape factor MAX	C _{fig,w}	0.40	
aerodynamic shape factor MIN	Cfig,I	-0.40	
aerodynamic shape factor MAX	Cfig,I	0.00	
Pressure MIN (Windward Side)	Ρ	-0.04	kPa
Pressure MIN (Windward Side) Pressure MAX (Windward Side)	P P	-0.04 0.06	kPa kPa
Pressure MIN (Windward Side) Pressure MAX (Windward Side) Pressure MIN (Leeward Side)	P P P	-0.04 0.06 -0.06	kPa kPa kPa
Pressure MIN (Windward Side) Pressure MAX (Windward Side) Pressure MIN (Leeward Side) Pressure MAX (Leeward Side)	P P P P	-0.04 0.06 -0.06 0.00	kPa kPa kPa kPa

4.1.1 Summary

	Dire	ection1	Direc	tion2
WIND EXTERNAL PRESSURE	Min (Kpa)	Max (Kpa)	Min (Kpa)	Max (Kpa)
Windward	-0.041	0.083	-0.041	0.055
Leeward	-0.083	0.000	-0.055	0.000

4.2 Wind Load Diagrams

4.2.1 Wind Load Ultimate (W_{min}) _ Opened Condition

Figure 2 Wind Min

4.2.2 Wind Load Ultimate (W_{max})_Opened Condition

Figure 3 Wind Max

- 5 Analysis
- 5.1 Results

5.1.1 Maximum Bending Moment in Major Axis

Figure 4 Maximum Bending Moment - Major

Address: Level M 394 Lane Cove Rd Macquarie Park NSW 2113 Phone: (02) 8964 1818

5.1.2 Maximum Bending Moment in Minor Axis

Figure 5: Maximum Bending Moment - Minor

Address: Level M 394 Lane Cove Rd Macquarie Park NSW 2113 Phone: (02) 8964 1818

5.1.3 Maximum Shear

Figure 6 Maximum Shear

Address: Level M 394 Lane Cove Rd Macquarie Park NSW 2113 Phone: (02) 8964 1818

5.1.4 Maximum Axial Force

Figure 7 Maximum Axial Force

Address: Level M 394 Lane Cove Rd Macquarie Park NSW 2113 Phone: (02) 8964 1818

5.1.5 Maximum Reactions – Opened

 $Fx = -0.11 \text{ kN} \\ Fy = 0.001 \text{ kN} \\ F_{z \text{ (up lift)}} = 0.35 \text{ kN} \\ F_{z \text{ (Bearing)}} = 0.50 \text{ kN}$

6 Aluminium Member Design

All Aluminium members passed. The summary results are tabulated below. Refer to Appendix 'A' for details.

MEMBER(S)	Section	d	t	Vx	Vy	P (Axial) Compression (-) Tension (+)	Мх	Му
		mm	mm	kN	kN	kN	kN.m	kN.m
Main Pole	D50x2.8	50	2.8	0.111	0.00084	-0.47	-0.2285	-0.0017

MEMBER(S)	Section	b	d	t	Vx	Vy	P (Axial)	Мх	My
		mm	mm	mm	kN	kN	kN	kN.m	kN.m
Long Rib 1	17x32x1.8	17	32	1.8	- 0.06	0.00135	-0.145	0.0326	0.0005935
Long Rib 2	17x32x1.8	17	32	1.8	- 0.06	4.3E-06	-0.15	0.022	0.00000124
Short Rib 1	17x32x1.8	17	32	1.8	-0	0.00121	-0.255	0	0.0028
Short Rib 2	17x32x1.8	17	32	1.8	-0	-4.6E- 05	-0.234	0.0006817	-0.00001802

6.1 Temporary Installation with 500 x 500x15 Base Plate

Umbrella Structure	Uplift Force (KN)	Self-Weight of the base plate(kg)	Additional weight to counteract Uplift (kg)
2m x 2m	0.12	25	10
2.5m x 2.5m	0.17	25	15
3m x 3m	0.35	25	45

7 Summary and Recommendations

- The 2m x 2m, 2.5m x 2.5m and 3m x 3m Premium Café SAVILLE Umbrella Structures as specified are capable of withstanding **60 m/s Wind Loads when open.**
- For forecast winds in excess of **60km/hr** the umbrella structure should be completely folded. The umbrella with temporary anchorage system must be stored in an enclosed building.

Yours faithfully, Prime Consulting Engineers Pty. Ltd. Bijaya Giri, MEng, MIEAust, CPEng, NER, APEC, IntPE (Aus), PE Vic

Address: Level M 394 Lane Cove Rd Macquarie Park NSW 2113 Phone: (02) 8964 1818

8 Appendix A – Aluminium Design Based on AS1664.1

Address: Level M 394 Lane Cove Rd Macquarie Park NSW 2113 Phone: (02) 8964 1818

8.1 Main Pole

Job no. 24-954-3

Date: 31/07/2024

NAME	SYMBOL		VALUE	UNIT	NOTES	REF
D50x2.8	Main Pole					
Alloy and temper	6061-T6					AS1664.1
Tension	Ftu	=	262	MPa	Ultimate	T3.3(A)
	Fty	=	241	MPa	Yield	
Compression	F _{cy}	=	241	MPa		
Shear	Fsu	=	165	MPa	Ultimate	
	F _{sy}	=	138	MPa	Yield	
Bearing	Fbu	=	551	MPa	Ultimate	
	F _{by}	=	386	MPa	Yield	
Modulus of elasticity	F	_	70000	MPa	Compressive	
	-		10000	Wir G	Compresente	
	kt	=	1.0			T2 4(D)
	kc	=	1.1			13.4(D)
FEM ANALYSIS RESULTS						
Axial force	Р	=	0.47	kN	compression	
	Р	=	0	kN	Tension	
In plane moment	Mx	=	0.2285	kNm		
Out of plane moment	My	=	0.0017	kNm		
DESIGN STRESSES						
Gross cross section area	Ag	=	415.19289	mm ²		
modulus	Zx	=	4641.1921	mm ³		
Out-of-plane elastic section	Zy	=	4641.1921	mm ³		
Stress from axial force	fa	=	P/A _a			
	- 4	=	1.13	MPa	compression	
		=	0.00	MPa	Tension	

Stress from in-plane bending	f _{bx}	=	M _x /Z _x				
		=	49.23	MPa	compression		
Stress from out-of-plane	f _{by}	=	M _y /Z _y	MDe	comprossion		
Tension		=	0.37	мга	compression		
3.4.3 Tension in rectangular tubes						3.4.3	
gana and a	ΦFι	=	267.87	MPa			
	Ŧ -	OR					
	ΦFι	=	276.15	MPa			
	T -						
COMPRESSION							
3.4.8 Compression in columns, axi	ial, gross	section	1				
1. General						3.4.8.1	
			2700				
Effective length factor	L	=	2700	mm			
Padius of gyration about	ĸ	=	1.00				
buckling axis (Y)	ry	=	16.72	mm			
Radius of gyration about	r.	_	16 72	mm			
buckling axis (X)	••••	_	10.72				
Slenderness ratio	kLb/ry	=	123.05				
Sienderness ratio	KL/IX	=	161.51				
Slenderness parameter	λ	=	3.017				
	Dc*	=	90.3				
	S ₁ *	=	0.62				
	S ₂ *	=	1.23				
	фсс	=	0.950				
Factored limit state stress	φF∟	=	25.16	MPa			
2 Sections not subject to torgional	l or toroio	ad flav	ural bualding			2492	
2. Sections not subject to torsional		iai-iiex	urai buckiiriy			3.4.0.Z	
flexural buckling	kL/r	=	161.51				
3.4.11 Uniform compression in cor	nponents	of colu	ımns, gross s	section -			
Uniform compression in componer	nts of colu	imns. a	ross section	- curved			
plates with both edges, walls of rol	und or ova	al tube				3.4.11	
	k 1	=	0.35			T3.3(D)	
mid-thickness radius of round							
tubular column or maximum	Rm	=	23.6				
	t	_	2.8	mm			
Slenderness	ر R/+	_	2.0 8 <u>4</u> 28571 <i>1</i>				
Cicriconicos	I XIII/ L	-	0.7200714				

Limit 1	S ₁	=	0.50			
Limit 2	S ₂	=	672.46			
Factored limit state stress	φF∟	=	239.94	MPa		
Most adverse compressive limit	_					
state stress	Fa	=	25.16	MPa		
Most adverse tensile limit state stress	Fa	=	267.87	MPa		
Most adverse compressive & Tensile capacity factor	f_a/F_a	=	0.04		PASS	
BENDING - IN-PLANE						
3.4.13 Compression in beams, ex	treme fibr	e, gros	s section roui	nd or oval		
tubes						
Unbraced length for bending	Lb	=	2057	mm		
Second moment of area (weak	l _v	=	1 16E+05	mm ⁴		
axis)	.,		0.005.05			
Torsion modulus	J	=	2.32E+05	mm ³		
Elastic section modulus	Z	=	4641.1921	mm³		
	R₀/t	=	8.43			
Limit 1	S ₁	=	44.07			
Limit 2	S ₂	=	78.23			
Factored limit state stress	φF∟	=	267.87	MPa		3.4.13
3.4.18 Compression in componen	ts of bean	ns - cu	Irverd plates v	with both		
edges supported			,			
	k 1	=	0.5			T3.3(D)
	k 2	=	2.04			T3.3(D)
mid-thickness radius of round						
tubular column or maximum	Rb	=	23.6	mm		
mid-thickness radius						
	t	=	2.8	mm		
Slenderness	R _b /t	=	8.4285714			
Limit 1	S ₁	=	2.75			
Limit 2	S ₂	=	78.23			
Factored limit state stress	φF∟	=	226.37	MPa		
Most adverse in-plane bending	Fhy	_	226 37	MPa		
limit state stress	I DX	_	220.01	in a		

Most adverse in-plane bending capacity factor	f _{bx} /F _{bx}	=	0.22		PASS	
BENDING - OUT-OF-PLANE						
NOTE: Limit state stresses, $\phi F_L a$ (doubly symmetric section)	are the san	ne for o	ut-of-plane k	pending		
Factored limit state stress	φF∟	=	226.37	MPa		
Most adverse out-of-plane bending limit state stress	F _{by}	=	226.37	MPa		
Most adverse out-of-plane bending capacity factor	f _{by} /F _{by}	=	0.00		PASS	
COMBINED ACTIONS						
4.1.1 Combined compression and	d bending					4.1.1
	Fa	=	25.16	MPa		3.4.11
	F _{ao}	=	239.94	MPa		3.4.11
	F _{bx}	=	226.37	MPa		3.4.18
	F_{by}	=	226.37	MPa		3.4.18
	f _a /F _a	=	0.045			
Check:	f _a /F _a + f _{bx} /	F _{bx} + f _{by}	/F _{by} ≤ 1.0			4.1.1
i.e.	0.26	≤	1.0		PASS	
SHEAR						
3.4.24 Shear in webs (Major Axis)						3.4.24
	R	=	25	mm		
	t	=	2.8	mm		
Equivalent h/t	h/t	=	36.73			
Limit 1	S1	=	29.01			
Limit 2	S ₂	=	59.31			
Factored limit state stress	φF∟	=	123.28	MPa		
Stress From Shear force	f _{sx}	=	V/A _w	MDe		
3.4.25 Shear in webs (Minor Axis)			0.55	wra		3.4.24
Clear web height	R +	=	25	mm		
Equivalent h/t	h/t	=	36.73			

Factored limit state stress Stress From Shear force	φF∟ f _{sy}	= =	123.28 V/A _w 0.00	MPa MPa		
Most adverseshear capacity factor (Major Axis)	f _{sx} /F _{sx}	=	0.00	MPa		
Most adverseshear capacity factor (Minor Axis)	f_{sy}/F_{sy}	=	0.00	Мра	PASS	
COMBINED ACTIONS						
4.4 Combined Shear, Compresi	on and bend	ding				4
Check:	f _a /F _a + f _b /F	= _b + (f _s /f	$(s_{s})^{2} \leq 1.0$			
i.e.	0.26	≤	1.0		PASS	

8.2 Long Rib 1

Job no.	24-954	Date:	19/07/2024

PRIME CONSULTING ENGINEERS PTY. LTD

NAME	SYMBOL		VALUE	UNIT	NOTES	REF
17x32x1.8	Long Rib 1					
Alloy and temper	6061-T6					AS1664.1
	_					
Tension	Ftu	=	262	мРа	Ultimate	13.3(A)
	F _{ty}	=	241	MPa	Yield	
Compression	F _{cy}	=	241	MPa		
Shoor	F _{su}	=	165	MPa	Ultimate	
Snear	F _{sy}	=	138	MPa	Yield	
Dearing	F _{bu}	=	551	MPa	Ultimate	
Беанид	F _{by}	=	386	MPa	Yield	
Modulus of elasticity	E	=	70000	MPa	Compressiv e	
	kt	=	1			
	kc	=	1			13.4(B)

FEM ANALYSIS RESULTS						
	_				_	
Axial force	P	=	0.145	kN	compression	
	P	=	0	kN	Tension	
In plane moment	Mx	=	0.0326	kNm		
Out of plane moment	My	=	0.000593 5	kNm		
DESIGN STRESSES						
Gross cross section area	Ag	=	163.44	mm ²		
In-plane elastic section	Z _x	=	1302.664	mm ³		
Out-of-plane elastic section mod.	Zy	=	2 871.3984 9	mm ³		
Stress from axial force	f _a	=	P/Ag			
		=	0.89	MPa	compression	
		=	0.00	MPa	Tension	
Stress from in-plane bending	f _{bx}	=	M _x /Z _x			
		=	25.03	МРа	compression	
Stress from out-of-plane	f _{by}	=	M _y /Z _y	MD -		
Tension		=	0.68	мра	compression	
3.4.3 Tension in rectangular tube	S					
	ΦFι	=	228.95	MPa		
	• -	0				
	. –	R	~~~ ~~			
	φ⊦∟	=	222.70	мРа		
COMPRESSION						
3.4.8 Compression in columns. a	kial. aross s	section				
1. General	, j					3.4.8.1
Unsupported length of member	L	=	2200	mm		
Effective length factor	k	=	1.00			
Radius of gyration about	r _v	=	6.73	mm		
Duckling axis (Y)	,					
buckling axis (X)	r _x	=	11.29	mm		
Slenderness ratio	kLb/ry	=	163.40			
Slenderness ratio	kL/rx	=	194.82			
Slenderness parameter	λ	=	3 64			
	De*	=	90.3			
	 S₁*	_	0 33			
	0	_	0.00			

l	• *				1	1 1
	S_2^*	=	1.23			
	фсс	=	0.950			
Factored limit state stress	φF∟	=	17.29	MPa		
2. Sections not subject to torsional	or torsior	nal-flexu	ural buckling			3.4.8.2
Largest slenderness ratio for	kl /r	_	10/ 82			
flexural buckling		-	134.02			
3.4.10 Uniform compression in con flat plates	nponents	of colu	mns, gross s	ection -		
1. Uniform compression in compor	nents of co	olumns,	gross sectio	on - flat		 3 4 10 1
	k ₁	=	0.35			T3.3(D)
Max. distance between toes of						
fillets of supporting elements for plate	b'	=	13.4			
	t	=	1.8	mm		
Slenderness	b/t	=	7.444444 4			
Limit 1	S ₁	=	12.34			
Limit 2	S ₂	=	32.87			
Factored limit state stress	φF∟	=	228.95	MPa		
Factored limit state stress	φF∟	=	228.95	МРа		
Factored limit state stress Most adverse compressive limit state stress	φF ∟ Fa	=	228.95 17.29	MPa MPa	-	
Factored limit state stress Most adverse compressive limit state stress Most adverse tensile limit state	φF ∟ Fa	=	228.95 17.29	MPa MPa		
Factored limit state stress Most adverse compressive limit state stress Most adverse tensile limit state stress	φF ∟ Fa Fa	=	228.95 17.29 222.70	MPa MPa MPa		
Factored limit state stress Most adverse compressive limit state stress Most adverse tensile limit state stress Most adverse compressive & Tensile capacity factor	φF ∟ Fa Fa fa/Fa	= = =	228.95 17.29 222.70 0.05	MPa MPa MPa	PASS	
Factored limit state stress Most adverse compressive limit state stress Most adverse tensile limit state stress Most adverse compressive & Tensile capacity factor	φF ∟ Fa Fa fa/Fa	= = =	228.95 17.29 222.70 0.05	MPa MPa MPa	PASS	
Factored limit state stress Most adverse compressive limit state stress Most adverse tensile limit state stress Most adverse compressive & Tensile capacity factor BENDING - IN-PLANE 3.4.15 Compression in beams, ext	φF ∟ Fa Fa fa/Fa	= = = =	228.95 17.29 222.70 0.05	MPa MPa MPa	PASS	
Factored limit state stress Most adverse compressive limit state stress Most adverse tensile limit state stress Most adverse compressive & Tensile capacity factor BENDING - IN-PLANE 3.4.15 Compression in beams, ext tubes, box sections	φF L Fa Fa fa/Fa	= = = e, gross	228.95 17.29 222.70 0.05	MPa MPa MPa	PASS	
Factored limit state stress Most adverse compressive limit state stress Most adverse tensile limit state stress Most adverse compressive & Tensile capacity factor BENDING - IN-PLANE 3.4.15 Compression in beams, ext tubes, box sections	φF ∟ Fa Fa fa/Fa	= = = >, gross	228.95 17.29 222.70 0.05 section recta	MPa MPa MPa	PASS	
Factored limit state stress Most adverse compressive limit state stress Most adverse tensile limit state stress Most adverse compressive & Tensile capacity factor BENDING - IN-PLANE 3.4.15 Compression in beams, ext tubes, box sections Unbraced length for bending	φF ∟ Fa Fa fa/Fa	= = = = ;, gross	228.95 17.29 222.70 0.05 • section recta 1100	MPa MPa MPa	PASS	
Factored limit state stress Most adverse compressive limit state stress Most adverse tensile limit state stress Most adverse compressive & Tensile capacity factor BENDING - IN-PLANE 3.4.15 Compression in beams, exit tubes, box sections Unbraced length for bending Second moment of area (weak axis)	φFL Fa Fa fa/Fa reme fibre L _b Iy	= = = = = = = =	228.95 17.29 222.70 0.05 section recta 1100 7.41E+03	MPa MPa MPa	PASS	
Factored limit state stress Most adverse compressive limit state stress Most adverse tensile limit state stress Most adverse compressive & Tensile capacity factor BENDING - IN-PLANE 3.4.15 Compression in beams, ext tubes, box sections Unbraced length for bending Second moment of area (weak axis) Torsion modulus	φF ∟ Fa Fa fa/Fa fa/Fa reme fibre L _b I _y J	= = = = = = = = =	228.95 17.29 222.70 0.05 section recta 1100 7.41E+03 1.67E+04	MPa MPa MPa angular mm mm ⁴ mm ³	PASS	
Factored limit state stress Most adverse compressive limit state stress Most adverse tensile limit state stress Most adverse compressive & Tensile capacity factor <i>BENDING - IN-PLANE</i> 3.4.15 Compression in beams, ext tubes, box sections Unbraced length for bending Second moment of area (weak axis) Torsion modulus Elastic section modulus	ϕF_L F_a F_a f_a/F_a reme fibre L_b I_y J Z	= = = = = = = = =	228.95 17.29 222.70 0.05 section recta 1100 7.41E+03 1.67E+04 1302.664	MPa MPa MPa	PASS	
Factored limit state stress Most adverse compressive limit state stress Most adverse tensile limit state stress Most adverse compressive & Tensile capacity factor <i>BENDING - IN-PLANE</i> 3.4.15 <i>Compression in beams, exit</i> <i>tubes, box sections</i> Unbraced length for bending Second moment of area (weak axis) Torsion modulus Elastic section modulus Slenderness	φF ∟ Fa Fa fa/Fa reme fibre Lb Iy J J Z S	= = = = = = = = = =	228.95 17.29 222.70 0.05 section recta 1100 7.41E+03 1.67E+04 1302.664 2 257.61	MPa MPa MPa	PASS	
Factored limit state stress Most adverse compressive limit state stress Most adverse tensile limit state stress Most adverse compressive & Tensile capacity factor <i>BENDING - IN-PLANE</i> 3.4.15 <i>Compression in beams, ext</i> <i>tubes, box sections</i> Unbraced length for bending Second moment of area (weak axis) Torsion modulus Elastic section modulus Slenderness Limit 1		= = = = = = = = = = =	228.95 17.29 222.70 0.05 section recta 1100 7.41E+03 1.67E+04 1302.664 2 257.61 0.39	MPa MPa MPa	PASS	
Factored limit state stress Most adverse compressive limit state stress Most adverse tensile limit state stress Most adverse compressive & Tensile capacity factor <i>BENDING - IN-PLANE</i> 3.4.15 <i>Compression in beams, exit</i> <i>tubes, box sections</i> Unbraced length for bending Second moment of area (weak axis) Torsion modulus Elastic section modulus Slenderness Limit 1 Limit 2	ϕF_{L} F_{a} f_{a}/F_{a} f_{a}/F_{a} reme fibre L_{b} I_{y} J J Z S_{1} S_{2}	= = = = = = = = = = = = =	228.95 17.29 222.70 0.05 section recta 1100 7.41E+03 1.67E+04 1302.664 2 257.61 0.39 1695.86	MPa MPa MPa	PASS	

Factored limit state stress	φF∟	=	193.57	МРа		 3.4.15(2)
3.4.17 Compression in componer compression), gross section - flat	nts of beam	s (com both e	ponent unde dges suppor	r uniform ted		
	, k₁	=	0.5			T3.3(D)
	k ₂	=	2.04			T3.3(D)
Max. distance between toes of fillets of supporting elements for plate	b'	=	13.4	mm		
	t	=	1.8	mm		
Slenderness	b/t	=	7.44444 4			
Limit 1	S ₁	=	12.34			
Limit 2	S ₂	=	46.95			
Factored limit state stress	φF∟	=	228.95	MPa		
Most adverse in-plane bending limit state stress	F_{bx}	=	193.57	MPa		
Most adverse in-plane bending capacity factor	f_{bx}/F_{bx}	=	0.13		PASS	
BENDING - OUT-OF-PLANE NOTE: Limit state stresses, $\phi F_L a$ (doubly symmetric section)	are the sam	e for oı	ut-of-plane b	ending		
Factored limit state stress	φF∟	=	193.57	МРа		
Most adverse out-of-plane bending limit state stress	F_{by}	=	193.57	MPa		
Most adverse out-of-plane bending capacity factor	f _{by} /F _{by}	=	0.00		PASS	
COMBINED ACTIONS						
4.1.1 Combined compression and	d bending					 4.1.1(2)
	Fa	=	17.29	MPa		3.4.8
	Fao	=	228.95	MPa		3.4.10
	F _{bx}	=	193.57	MPa		3.4.17
	F_{by}	=	193.57	MPa		3.4.17
	f _a /Fa	=	0.051			
Check:	f _a /F _a + f _{bx} /F	bx + fby/	$F_{by} \leq 1.0$			4.1.1 (3)

i.e.	0.18	≤	1.0		PASS	
3.4.24 Shear in webs (Major Axis)						 4.1.1(2)
Clear web height	h	=	28.4	mm		
	t	=	1.8	mm		
Slenderness	h/t	=	15.77777 8			
Limit 1	S ₁	=	29.01			
Limit 2	S ₂	=	59.31			
Factored limit state stress	φF∟	=	131.10	MPa		
Stress From Shear force	f _{sx}	=	V/A _w			
3.4.25 Shear in webs (Minor Axis)			0.43	МРа		
Clear web height	b t	=	13.4 1.8	mm mm		
Slenderness	b/t	=	7.444444 4			
Factored limit state stress	φF∟	=	131.10	МРа		
Stress From Shear force	f _{sy}	=	V/A _w			
			0.01	МРа		
Most adverseshear capacity factor (Major Axis)	f _{sx} /F _{sx}	=	0.00	MPa	1	
Most adverseshear capacity factor (Minor Axis)	f _{sy} /F _{sy}	=	0.00	Мра	PASS	
COMBINED ACTIONS						
4.4 Combined Shear, Compres	ion and bend	ding				
		-				
Check:	fa∕Fa + fb∕F	b + (fs/F	$(s_{s})^{2} \leq 1.0$			
i.e.	0.18	≤	1.0		PASS	

Address: Level M 394 Lane Cove Rd Macquarie Park NSW 2113 Phone: (02) 8964 1818

8.3 Long Rib 2

Job no. 24-954 **Date:** 19/07/2024

NAME	SYMBOL		VALUE	UNIT	NOTES	REF
17x32x1.8	Long Rib 2					
Alloy and temper	6061-T6					AS1664.1
Tension	Ftu	=	262	MPa	Ultimate	T3.3(A)
	F _{ty}	=	241	MPa	Yield	
Compression	F _{cy}	=	241	MPa		
Shear	F_{su}	=	165	MPa	Ultimate	
Choal	F _{sy}	=	138	MPa	Yield	
Bearing	F_{bu}	=	551	MPa	Ultimate	
Dearing	F _{by}	=	386	MPa	Yield	
Modulus of elasticity	F	_	70000	MPa	Compressive	
modulus of elasticity	L	-	10000		Compressive	
	k	=	1			
	kc	=	1			13.4(B)
FEM ANALYSIS RESULTS						
Axial force	Р	=	0.15	kN	compression	
	Р	=	0	kN	Tension	
In plane moment	Mx	=	0.022	kNm		
Out of plane moment	My	=	1.24E-06	kNm		
DESIGN STRESSES						
Gross cross section area	Ag	=	163.44	mm ²		
modulus	Zx	=	1302.6642	mm ³		
Out-of-plane elastic section mod.	Zy	=	871.39849	mm ³		
Stress from axial force	f _a	=	P/A _g			
		=	0.92	MPa	compression	
	,	=	0.00	MPa	Tension	
Stress from in-plane bending	t _{bx}	=	M _x /Z _x	MDe	aamproopiar	
		=	16.89	wPa	compression	

Stress from out-of-plane	f _{by}	=	M _y /Z _y	MDo	compression	
Tension		-	0.00	IVIFa	compression	
3.4.3 Tension in rectangular tube	s					
	φF∟	=	228.95	МРа		
	φF∟	=	222.70	МРа		
COMPRESSION						
3.4.8 Compression in columns, a 1. General	xial, gross	sectio	1			3.4.8.1
Unsupported length of member	L	=	1600	mm		
Effective length factor	k	=	1.00			
Radius of gyration about buckling axis (Y)	r _y	=	6.73	mm		
Radius of gyration about buckling axis (X)	r _x	=	11.29	mm		
Slenderness ratio	kLb/ry	=	163.40			
Slenderness ratio	kL/rx	=	141.68			
Slenderness parameter	λ	=	3.05			
	D _c *	=	90.3			
	S1*	=	0.33			
	S ₂ *	=	1.23			
	фсс	=	0.950			
Factored limit state stress	φF∟	=	24.58	МРа		
2. Sections not subject to torsion	al or torsio	nal-flex	kural buckling	9		3.4.8.2
Largest slenderness ratio for flexural buckling	kL/r	=	163.40			
3.4.10 Uniform compression in conflat plates	omponents	of col	umns, gross	section -		
1. Uniform compression in compo plates with both edges supported	onents of c	olumn	s, gross sect	ion - flat		 3.4.10.1
	k ₁	=	0.35			T3.3(D)
Max. distance between toes of fillets of supporting elements for plate	b'	=	13.4			
	t	=	1.8	mm		
Slenderness	b/t	=	7.444444			
Limit 1	S1	=	12.34			

Limit 2	S ₂	=	32.87			
Factored limit state stress	φF∟	=	228.95	МРа		
Most adverse compressive limit state stress	Fa	=	24.58	MPa		
Most adverse tensile limit state stress	Fa	=	222.70	MPa		
Most adverse compressive & Tensile capacity factor	fa/Fa	=	0.04		PASS	
BENDING - IN-PLANE						
3.4.15 Compression in beams, ex tubes, box sections	treme fibr	e, gros	s section rect	angular		
Unbraced length for bending	L _b	=	1100	mm		
Second moment of area (weak axis)	ly	=	7406.8872	mm ⁴		
Torsion modulus	J	=	16708.894	mm ³		
Elastic section modulus	Z	=	1302.6642	mm ³		
Slenderness	S	=	257.61			
Limit 1	S ₁	=	0.39			
Limit 2	S ₂	=	1695.86			
Factored limit state stress	φF∟	=	193.57	MPa		 3.4.15(2)
3.4.17 Compression in componen compression), gross section - flat	ts of bean plates wit	ns (cor h both	nponent unde edges suppo	er uniform rted		
	k ₁	=	0.5			T3.3(D)
	k ₂	=	2.04			T3.3(D)
Max. distance between toes of fillets of supporting elements for plate	b'	=	13.4	mm		
•	t	=	1.8	mm		
Slenderness	b/t	=	7.444444			
Limit 1	S ₁	=	12.34			
Limit 2	S ₂	=	46.95			
Factored limit state stress	φF∟	=	228.95	MPa		
Most adverse in-plane bending limit state stress	F _{bx}	=	193.57	MPa		

Most adverse in-plane bending capacity factor	f _{bx} /F _{bx}	=	0.09		PASS	
BENDING - OUT-OF-PLANE						
NOTE: Limit state stresses, ϕF_L a (doubly symmetric section)	are the san	ne for d	out-of-plane b	ending		
Factored limit state stress	φF∟	=	193.57	MPa		
Most adverse out-of-plane bending limit state stress	F _{by}	=	193.57	MPa		
Most adverse out-of-plane bending capacity factor	f _{by} /F _{by}	=	0.00		PASS	
COMBINED ACTIONS						
4.1.1 Combined compression and	d bending					4.1.1(2)
	F	_	24 59	MDo		219
	Га Баа	_	24.50	мРа		3.4.0
	F ao	_	193 57	MPa		3 4 17
	Fby	=	193.57	MPa		3.4.17
	. 59					
	f _a /F _a	=	0.037			
Check:	f _a /F _a + f _{bx} /	/F _{bx} + fi	$_{\rm by}/F_{\rm by} \leq 1.0$			4.1.1
i.e.	0.12	≤	1.0		PASS	
SHEAR						
3.4.24 Shear in webs (Major Axis)						4.1.1(2)
Clear web height	h	=	28.4	mm		
5	t	=	1.8	mm		
Slenderness	h/t	=	15.777778			
Limit 1	S1	=	29.01			
Limit 2	S ₂	=	59.31			
Factored limit state stress	φF∟	=	131.10	MPa		
Stress From Shear force	f _{sx}	=	V/A _w			
0.405.01			0.41	MPa		
<i>3.4.25</i> Snear in webs (Minor Axis)						
Clear web height	b	=	13.4	mm		
-	t	=	1.8	mm		

Slenderness	b/t	=	7.4444444			
Factored limit state stress Stress From Shear force	φF∟ f _{sv}	= =	131.10 V/A _w	MPa		
	·		0.00	MPa		
Most adverseshear capacity factor (Major Axis)	f _{sx} /F _{sx}	=	0.00	MPa	1	
Most adverseshear capacity factor (Minor Axis)	f _{sy} /F _{sy}	=	0.00	Мра	PASS	
COMBINED ACTIONS						
4.4 Combined Shear, Compresid	on and bend	ding				
Check:	f _a /F _a + f _b /F	- b + (fs/	$(F_{s})^{2} \leq 1.0$			
i.e.	0.12	≤	1.0		PASS	

8.4 Short Rib 1

Job no. 24-954 **Date:** 19/07/2024

NAME	SYMBOL		VALUE	UNIT	NOTES	REF
17x32x1.8	Short Rib 1					
Alloy and temper	6061-T6					AS1664.1
Tension	Ftu	=	262	MPa	Ultimate	T3.3(A)
	Fty	=	241	MPa	Yield	
Compression	F _{cy}	=	241	MPa		
Shoor	F_{su}	=	165	MPa	Ultimate	
Sileal	F_{sy}	=	138	MPa	Yield	
Bearing	Fbu	=	551	MPa	Ultimate	
bearing	F_{by}	=	386	MPa	Yield	
Modulus of elasticity	E	=	70000	MPa	Compressiv e	
	kt	=	1			T3.4(B)

	kc	=	1			
FEM ANALYSIS RESULTS						
Axial force	Р	=	0.255	kN	compression	
	Р	=	0	kN	Tension	
In plane moment	Mx	=	0	kNm		
Out of plane moment	My	=	0.0028	kNm		
DESIGN STRESSES						
Gross cross section area	Ag	=	163.44	mm ²		
In-plane elastic section modulus	Zx	=	1302.6642	mm ³		
Out-of-plane elastic section	Zy	=	871.39849	mm ³		
Stress from axial force	fa	=	P/A _a			
		=	1.56	MPa	compression	
		=	0.00	MPa	Tension	
Stress from in-plane bending	f _{bx}	=	M _x /Z _x			
		=	0.00	MPa	compression	
Stress from out-of-plane	Tby	=	IVIy/∠y 2.21	MDo	aampraaaian	
Tension		-	3.21	IVIFa	compression	
3.4.3 Tension in rectangular tubes						
5	φF∟	=	228.95	MPa		
		OR				
	φF∟	=	222.70	MPa		
COMPRESSION						
3.4.8 Compression in columns, axi	al, gross :	section				3481
						0. 1.0. 1
Unsupported length of member	L	=	1100	mm		
Effective length factor	k	=	1.00			
Radius of gyration about	r _y	=	6.73	mm		
Radius of gyration about						
buckling axis (X)	٢x	=	11.29	mm		
Slenderness ratio	kLb/ry	=	163.40			
Sienderness ratio	kL/rx	=	97.41			
Slenderness parameter	λ	=	3.05			
	D_*	_	00.3			
		_	90.5			

	•				1	1 1
	S_2^*	=	1.23			
	фсс	=	0.950			
Factored limit state stress	φF∟	=	24.58	MPa		
2. Sections not subject to torsiona	al or torsion	nal-flex	ural buckling			3.4.8.2
Largest slenderness ratio for flexural buckling	kL/r	=	163.40			
3.4.10 Uniform compression in co	omponents	of colu	ımns, gross s	ection -		
1. Uniform compression in compo plates with both edges supported	nents of c	olumns	s, gross sectio	on - flat		 3.4.10.1
	k 1	=	0.35			T3.3(D)
Max, distance between toes of		-	0.00			
fillets of supporting elements for plate	b'	=	13.4			
	t	=	1.8	mm		
Slenderness	b/t	=	7.444444			
Limit 1	S ₁	=	12.34			
Limit 2	S ₂	=	32.87			
Factored limit state stress	φF∟	=	228.95	MPa		
Factored limit state stress Most adverse compressive limit state stress	φF ∟ Fa	=	228.95 24.58	MPa MPa		
Factored limit state stress Most adverse compressive limit state stress Most adverse tensile limit state stress	φF ∟ Fa Fa	= = =	228.95 24.58 222.70	MPa MPa MPa		
Factored limit state stress Most adverse compressive limit state stress Most adverse tensile limit state stress Most adverse compressive & Tensile capacity factor	φF ∟ Fa Fa fa/Fa	= = =	228.95 24.58 222.70 0.06	MPa MPa MPa	PASS	
Factored limit state stress Most adverse compressive limit state stress Most adverse tensile limit state stress Most adverse compressive & Tensile capacity factor	φF ⊾ Fa Fa fa/Fa	=	228.95 24.58 222.70 0.06	MPa MPa MPa	PASS	
Factored limit state stress Most adverse compressive limit state stress Most adverse tensile limit state stress Most adverse compressive & Tensile capacity factor BENDING - IN-PLANE	ΦF ∟ Fa Fa fa/Fa	=	228.95 24.58 222.70 0.06	MPa MPa MPa	PASS	
Factored limit state stress Most adverse compressive limit state stress Most adverse tensile limit state stress Most adverse compressive & Tensile capacity factor BENDING - IN-PLANE 3.4.15 Compression in beams, ex tubes, box sections	φF ∟ Fa Fa fa/Fa	= = = =	228.95 24.58 222.70 0.06 s section rect	MPa MPa MPa	PASS	
Factored limit state stress Most adverse compressive limit state stress Most adverse tensile limit state stress Most adverse compressive & Tensile capacity factor BENDING - IN-PLANE 3.4.15 Compression in beams, ex tubes, box sections Unbraced length for bending	φF ∟ Fa Fa fa/Fa ttreme fibre	= = = =, gros.	228.95 24.58 222.70 0.06 s section rect 1100	MPa MPa MPa	PASS	
Factored limit state stress Most adverse compressive limit state stress Most adverse tensile limit state stress Most adverse compressive & Tensile capacity factor BENDING - IN-PLANE 3.4.15 Compression in beams, ex tubes, box sections Unbraced length for bending Second moment of area (weak axis)		= = = = = = = =	228.95 24.58 222.70 0.06 s section rect 1100 7406.8872	MPa MPa MPa	PASS	
Factored limit state stress Most adverse compressive limit state stress Most adverse tensile limit state stress Most adverse compressive & Tensile capacity factor BENDING - IN-PLANE 3.4.15 Compression in beams, ex tubes, box sections Unbraced length for bending Second moment of area (weak axis) Torsion modulus	φF∟ Fa Fa fa/Fa treme fibre Lb Iy J	= = = = = = = = =	228.95 24.58 222.70 0.06 s section rect 1100 7406.8872 16708.894	MPa MPa MPa angular mm mm ⁴ mm ³	PASS	
Factored limit state stress Most adverse compressive limit state stress Most adverse tensile limit state stress Most adverse compressive & Tensile capacity factor BENDING - IN-PLANE 3.4.15 Compression in beams, ex tubes, box sections Unbraced length for bending Second moment of area (weak axis) Torsion modulus Elastic section modulus	$φF_L$ F_a F_a f_a/F_a etreme fibre L_b I_y J Z	= = = = = = = = = =	228.95 24.58 222.70 0.06 s section rects 1100 7406.8872 16708.894 1302.6642	MPa MPa MPa angular mm mm ⁴ mm ³ mm ³	PASS	
Factored limit state stress Most adverse compressive limit state stress Most adverse tensile limit state stress Most adverse compressive & Tensile capacity factor <i>BENDING - IN-PLANE</i> 3.4.15 <i>Compression in beams, ex</i> <i>tubes, box sections</i> Unbraced length for bending Second moment of area (weak axis) Torsion modulus Elastic section modulus Slenderness		= = = = = = = = = =	228.95 24.58 222.70 0.06 s section rect 1100 7406.8872 16708.894 1302.6642 257.61	MPa MPa MPa	PASS	
Factored limit state stress Most adverse compressive limit state stress Most adverse tensile limit state stress Most adverse compressive & Tensile capacity factor BENDING - IN-PLANE 3.4.15 Compression in beams, ex tubes, box sections Unbraced length for bending Second moment of area (weak axis) Torsion modulus Elastic section modulus Slenderness Limit 1	$φF_L$ F_a F_a f_a/F_a ettreme fibre L_b I_y J Z S S_1	= = = = = = = = = = =	228.95 24.58 222.70 0.06 s section rect. 1100 7406.8872 16708.894 1302.6642 257.61 0.39	MPa MPa MPa	PASS	
Factored limit state stress Most adverse compressive limit state stress Most adverse tensile limit state stress Most adverse compressive & Tensile capacity factor BENDING - IN-PLANE 3.4.15 Compression in beams, ex tubes, box sections Unbraced length for bending Second moment of area (weak axis) Torsion modulus Elastic section modulus Slenderness Limit 1 Limit 2	$φF_L$ Fa Fa fa/Fa treme fibre Lb Iy J Z S S1 S2	= = = = = = = = = = = = =	228.95 24.58 222.70 0.06 s section rect 1100 7406.8872 16708.894 1302.6642 257.61 0.39 1695.86	MPa MPa MPa	PASS	

Factored limit state stress	φF∟	=	193.57	МРа		 3.4.15(2)
3.4.17 Compression in componen compression), gross section - fla	nts of beam t plates with	s (con both	nponent unde edges suppol	r uniform rted		
	k ₁	=	0.5			T3.3(D)
	k ₂	=	2.04			T3.3(D)
Max. distance between toes of fillets of supporting elements for plate	b'	=	13.4	mm		
	t	=	1.8	mm		
Slenderness	b/t	=	7.4444444			
Limit 1	S ₁	=	12.34			
Limit 2	S ₂	=	46.95			
Factored limit state stress	φF∟	=	228.95	MPa		
Most adverse in-plane bending limit state stress	F _{bx}	=	193.57	MPa		
Most adverse in-plane bending capacity factor	f _{bx} /F _{bx}	=	0.00		PASS	
BENDING - OUT-OF-PLANE						
NOTE: Limit state stresses, $\phi F_L a$ (doubly symmetric section)	are the sam	e for c	out-of-plane b	ending		
Factored limit state stress	φF∟	=	193.57	MPa		
Most adverse out-of-plane bending limit state stress	F_{by}	=	193.57	MPa		
Most adverse out-of-plane bending capacity factor	f _{by} /F _{by}	=	0.02		PASS	
4.1.1 Combined compression and	d bending					4.1.1(2)
	Fa	=	24.58	MPa		3.4.8
	Fao	=	228.95	MPa		3.4.10
	Fhy	=	193.57	MPa		3 4 17
	F bx	_	193 57	MPa		3 4 17
	гру	-	100.07			0.7.17
	fa/Fa	=	0.063			
Check:	f _a /F _a + f _{bx} /F	= _{bx} + f _b	$_{\rm by}/{\rm F}_{\rm by} \leq 1.0$			4.1.1 (3)

i.e.	. 0.08	≤	1.0		PASS	
SHEAR						
Axis)						4.1.1(2)
Clear web height	h	=	28.4	mm		
Clandernees	t L	=	1.8	mm		
Siendemess	n/t	=	15.777778			
	51	=	29.01			
Limit 2	S_2	=	59.31			
Factored limit state stress	φF∟	=	131.10	MPa		
Stress From Shear force	f _{sx}	=	V/A _w			
			0.02	MPa		
3.4.25 Shear in webs (Minor Axis)						
Clear web height	b	=	13.4	mm		
<u> </u>	t	=	1.8	mm		
Slenderness	b/t	=	7.444444			
Factored limit state stress	φF∟	=	131.10	MPa		
Stress From Shear force	f _{sv}	=	V/A _w			
	2		0.01	МРа		
Most adverseshear capacity	c /=		0.00			
factor (Major Axis)	tsx/⊢sx	=	0.00	мРа		
Most adverseshear capacity factor (Minor Axis)	f_{sy}/F_{sy}	=	0.00	Мра	PASS	
COMBINED ACTIONS						
4.4 Combined Shear, Compres	ion and ben	ding				
Check	: f _a /F _a + f _b /	′F _b + (f _s /	$(F_{s})^{2} \leq 1.0$			
i.e.	0.08	≤	1.0		PASS	

Address: Level M 394 Lane Cove Rd Macquarie Park NSW 2113 Phone: (02) 8964 1818

8.5 Short Rib 2

Job no. 24-954 **Date:** 19/07/2024

NAME	SYMBOL		VALUE	UNIT	NOTES	REF
17x32x1.8	Short					
Alloy and temper	6061-T6					AS1664.1
Tension	F _{tu}	=	262	MPa	Ultimate	T3.3(A)
	F _{ty}	=	241	MPa	Yield	
Compression	F _{cy}	=	241	MPa		
Shear	Fsu	=	165	MPa	Ultimate	
Chical	F _{sy}	=	138	MPa	Yield	
Bearing	F _{bu}	=	551	MPa	Ultimate	
Doarnig	F _{by}	=	386	MPa	Yield	
Modulus of elasticity	E	=	70000	MPa	Compressiv e	
	kt	=	1			
	kc	=	1			13.4(B)
FEM ANALYSIS RESULTS						
Axial force	Р	=	0.234	kN	compression	
	P	=	0	kN	Tension	
In plane moment	M _x	=	0.000681 7	kNm		
Out of plane moment	My	=	1.802E-05	kNm		
250/04/07250050						
DESIGN STRESSES	۸		400.44			
Gross cross section area	Ag	=	163.44	mm ²		
modulus	Zx	=	1302.6642	mm ³		
Out-of-plane elastic section mod.	Zy	=	871.39849	mm ³		
Stress from axial force	f _a	=	P/A _g			
		=	1.43 0.00	MPa MPa	compression Tension	

1						
Stress from in-plane bending	f _{bx}	=	M _x /Z _x			
		=	0.52	MPa	compression	
Stress from out-of-plane bending	t _{by}	=	M _y /∠ _y 0.02	MPa	compression	
Tension						
3.4.3 Tension in rectangular tubes	s					
	φF∟	= O R	228.95	МРа		
	φF∟	=	222.70	MPa		
COMPRESSION						
3.4.8 Compression in columns, a	xial, gross :	section				
1. General						3.4.8.1
Unsupported length of member	L	=	1045	mm		
Effective length factor	k	=	1.00			
Radius of gyration about buckling axis (Y)	r _y	=	6.73	mm		
Radius of gyration about buckling axis (X)	r _x	=	11.29	mm		
Slenderness ratio	kLb/ry	=	155.23			
Slenderness ratio	kL/rx	=	92.54			
Slenderness parameter	λ	=	2.90			
	D _c *	=	90.3			
	S ₁ *	=	0.33			
	S ₂ *	=	1.23			
	фсс	=	0.950			
Factored limit state stress	φF∟	=	27.24	МРа		
2. Sections not subject to torsiona	al or torsion	nal-flexu	ıral buckling	9		3.4.8.2
Largest slenderness ratio for flexural buckling	kL/r	=	155.23			
3.4.10 Uniform compression in conflat plates	omponents	of colui	mns, gross	section -		
1. Uniform compression in compo plates with both edges supported	onents of co	olumns,	gross sect	ion - flat		 3.4.10.1
,	k1	=	0.35			T3.3(D)
Max. distance between toes of fillets of supporting elements for plate	b'	=	13.4			

Slenderness Limit 1	t b/t S₁	= = =	1.8 7.444444 12.34	mm			
Limit 2	S ₂	=	32.87				
Factored limit state stress	φF∟	=	228.95	MPa			
Most adverse compressive limit state stress	Fa	=	27.24	MPa			
Most adverse tensile limit state stress	Fa	=	222.70	MPa			
Most adverse compressive & Tensile capacity factor	f _a /F _a	=	0.05		PASS		
BENDING - IN-PLANE							
3.4.15 Compression in beams, ext tubes, box sections	reme fibre	e, gros	s section rect	angular			
Unbraced length for bending	Lb	=	1045	mm			
Second moment of area (weak axis)	ly	=	7406.8872	mm ⁴			
Torsion modulus	J	=	16708.894	mm ³			
Elastic section modulus	Z	=	1302.6642	mm ³			
Slenderness	S	=	244.73				
Limit 1	S1	=	0.39				
Limit 2	S ₂	=	1695.86				
Factored limit state stress	φF∟	=	194.50	MPa		 3.4.15(2)	
3.4.17 Compression in component compression), gross section - flat p	ts of beam plates with	ns (con n both (nponent unde edges suppor	r uniform ted			
	k 1	=	0.5			T3.3(D)	
	k ₂	=	2.04			T3.3(D)	
Max. distance between toes of fillets of supporting elements for plate	b'	=	13.4	mm			
	t	=	1.8	mm			
Slenderness	b/t	=	7.444444				
Limit 1	S1	=	12.34				
Limit 2	S ₂	=	46.95				
Factored limit state stress	φF∟	=	228.95	MPa			

Most adverse in-plane bending limit state stress	F _{bx}	=	194.50	MPa		
Most adverse in-plane bending capacity factor	f_{bx}/F_{bx}	=	0.00		PASS	
BENDING - OUT-OF-PLANE						
NOTE: Limit state stresses, $\phi F_{L} = (doubly symmetric section)$	are the sarr	ne for o	out-of-plane b	ending		
Factored limit state stress	φF∟	=	194.50	MPa		
Most adverse out-of-plane bending limit state stress	F _{by}	=	194.50	MPa		
Most adverse out-of-plane bending capacity factor	f _{by} /F _{by}	=	0.00		PASS	
4.1.1 Combined compression and	d bending					4.1.1(2)
	-					
	Fa	=	27.24	MPa		3.4.8
	Fao	=	228.95	MPa		3.4.10
	F _{bx}	=	194.50	MPa		3.4.17
	F _{by}	=	194.50	MPa		3.4.17
	fa/Fa	=	0.053			
Check:	f _a /Fa + f _{bx} /	F _{bx} + f _b	$_{\rm y}/{\rm F}_{\rm by} \leq 1.0$			4.1.1
i.e.	0.06	≤	1.0		PASS	(-)
SHEAR						
3.4.24 Shear in webs (Major Axis)						4.1.1(2)
Clear web height	h	=	28.4	mm		
Slenderness	ι h/t	=	15.777778	11111		
Limit 1	S ₁	=	29.01			
Limit 2	S ₂	=	59.31			
Factored limit state stress	φF∟	=	131.10	MPa		
Stress From Shear force	f _{sx}	=	V/A _w			
			0.00	MPa		
3.4.25 Shear in webs (Minor Axis)						

Clear web height	b	=	13.4	mm	
0	t	=	1.8	mm	
Slenderness	b/t	=	7.444444		
Factored limit state stress	φF∟	=	131.10	MPa	
Stress From Shear force	f _{sy}	=	V/A _w		
			0.00	MPa	
Most adverseshear capacity	f _{sx} /F _{sx}	=	0.00	MPa	
Most adverseshear capacity factor (Minor Axis)	f_{sy}/F_{sy}	=	0.00	Мра	PASS
COMBINED ACTIONS					
4.4 Combined Shear, Compresion	n and bend	ling			
Check:	f _a /F _a + f _b /F	- b + (f _s /	$F_{s)^2} \le 1.0$		
i.e.	0.06	≤	1.0		PASS

Address: Level M 394 Lane Cove Rd Macquarie Park NSW 2113 Phone: (02) 8964 1818

9 Appendix B – Technical Data Sheet

PREMIUM CAFE SAVILLE

Premium Shade Solutions

aller .

10

H

PRODUCT SHOWN

3m x 3m square - Saville Spanish Recasens - Sunflower Frame Colour - Black COPP.

PREMIUM 5

The Premium range features a heavy duty, 30 sided, 50mm x 2mm main umbrella pole, laser engraved, solid aluminium forged centre hubs, an easy glide pulley lift system and most importantly, fabric imported from Recasens who are located in Spain and have been manufacturing high quality fabric since 1886.

Specifications

Square 2m x 2m | 2.5m x 2.5m | 3m x 3m

2.5m | 3m | 3.5m | 4m diameter

Specifications - Square

Size	2m x 2m	2.5m x 2.5m	3m x 3m					
Canopy Span	2m x 2m	2.5m x 2.5m	3m x 3m					
Height	2.7m	2.7m						
Clearance	2.1m							
Fabric Weight	2.5kg	2.8kg	3.2kg					
Frame Weight	10kg	11kg	12kg					
Frame Box Dimensions	30 x 30 x 262cm							
Main Profile Dia.	50mm diameter x 2.8mm thick							
Framework	Aluminium (Black or Silver)							
Pole Connectors	Extruded Aluminium							
Lifting	4x Pulley System							
Fabric	Spanish Recasens							
Printing	UV Digital Print Screen Printing (4 colou	ırs)						
Manufacturer's Warranty	Frame 3 Years Recasens Fabric: 5 Year Printed Fabric: 2 Years	s						
Weight Plates	Optional accessory							

PREMIUM B SAVILLE

Technical Information

Square

Square 2.5m x 2.5m

Square 3m x 3m diameter

Specifications - Octagonal

Size	2.5m dia	3m dia.	3.5m dia.	4m dia.			
Canopy Diameter	2.5m	3m	3.5m	4m			
Height	2.6m		2.7m	·			
Clearance	2.1m		·				
Fabric Weight	3kg	3kg	3kg	3.5kg			
Frame Weight	11kg	11kg	12kg	13kg			
Frame Box Dimensions	30 x 30 x 262cm	,					
Main Profile Dia.	50mm diameter x 2.8mm thick						
Framework	Aluminium (Black or Silver)						
Pole Connectors	Extruded Aluminium	I					
Lifting	4x Pulley System						
Fabric	Spanish Recasens						
Printing	UV Digital Print Screen Printing (4 cc	lours)					
Manufacturer's Warranty	Frame 3 Years Recasens Fabric: 5 Years Printed Fabric: 2 Years						
Weight Plates	Optional accessory						

Technical Information

Ø2509.4

Octagonal 2.5m diameter

Octagonal 3m diameter

Octagonal 3.5m diameter

Octagonal 4m diameter

Fabric Colours

Spanish Recasens

The fabric is a high-performance solution-dyed and fade resistant canvas that has been optimized for high tensile and tear strength. The Recasens brand has been manufacturing high quality fabrics in Spain since 1886

Printing

UV Printing

UV printing is a form of digital printing that uses ultraviolet lights to dry or cure ink as it is printed. As the printer distributes ink on the surface of the marquee fabric, specially designed UV lights follow close behind, "curing" or "drying" the ink instantly.

The benefits of UV printing are that it is very resistant to fading. With UV printing there is also no restrictions to the number of colours or logos on the design. UV printing is done on our heavy duty 900D PU Coated Polyester Fabric.

Screen Printing

Screen Printing is the process whereby ink is forced onto the fabric through a mesh screen. Screen printing is ideal for simple designs that are produced in higher quantities.

Ground Fixings

Square Base Plate

Size - 500mm (W) x 500mm (L) x 10mm (H) Weight - 12.5kg Sold seperatley, available for all sizes

Square Base Plate Size - 500mm (W) x 500mm (L) x 15mm (H) Weight - 25kg Sold seperatley, available for all sizes

Square Weight Plate

Size - 500mm (W) x 500mm (L) x 30mm (H) Weight - 12.5kg Sold seperatley, available for all sizes

Instructions

Video https://vimeo.com/722752025

P 1300 667 255 admin@flare-shade.com.au 3 Bailey Court, Brendale, QLD, Australia 4500 **SHOP ONLINE** www.flare-shade.com.au

f 🖸 **P** 1300 850 832 **F** 07 3355 7720 admin@extreme-marquees.com.au 3 Bailey Court, Brendale, QLD, Australia 4500

SHOP ONLINE www.extreme-marquees.com.au